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finite element algorithm for solution of the parabolized form of the time-

averaged, three-dimensional Navier-Stokes equations (3DPNS). The essential

ingredients of this algorithmic description are presented and discussed.

A production finite element computer code (COMOC:3DPNS) was utilized to conduct

the computational experiments, and the description of problem definition and

data deck preparation is contained at the end of the report. The key results

of the computational experiments are discussed, regarding the basic causal

mechanisms of the VSTOL jet, as well as results for confirmation test cases

documenting viability of the constructed computational model.

ii



PREFACE

The effort reported herein was performed by Computational Mechanics

Consultants, Inc. during the period September 1979 through September 1980

with Dr. A. J. Baker as Principal Investigator. The sponsorship was provided

by the Naval Air Development Center, Warminster, Pennsylvania, under Contract

No. N62269-79-C-0295. The NADC Technical Monitor was Dr. K. T. Yen, whose

helpful suggestions and experienced guidance are acknowledged.

i iii'



TABLE OF CONTENTS

Page No.

PREFACE ........... ................................. . iii

TABLE OF CONTENTS .......... ........................... iv

LIST OF SYMBOLS ............ ............................ v

LIST OF FIGURES ........ ............................ .. viii

INTRODUCTION ............ ............................. 1

PROBLEM DEFINITION ....... ........................... .... 11

Overview ............ ......................... ... 11

Three-Dimensional Parabolic Navier-Stokes Equations ... ....... 11

Reynolds Stress Closure Model For 3DPNS ...... ............. 15

Finite Element Solution Algorithm ....... ................ 17

Documentary Results .......... ........................ 20

RESULTS AND DISCUSSION .......... ........................ 23

Overview ........ ............................. .... 23

Boundary and Initial Conditions ..... ................. .... 23

Validation Numerical Results ........ ................... 26

Circular VSTOL Jet Simulation Results .................. .... 30

SUMMARY & CONCLUSIONS .......... ......................... 43

REFERENCES ............ ............................... 45

APPENDIX: VSTOL Simulation Data Deck For COMOC:3DPNS ....... ...... 47

DISTRIBUTION LIST

iv



LIST OF SYMBOLS

a boundary condition coefficient

C coefficient

d differential

D jet diameter

e finite element index

E mean flow strain rate tensor

f function of known argument

h integration step size

k turbulence kinetic energy; interpolation polynomial degree

Z. differential operator; length scale

L differential operator

M number of finite elements spanning Rn

n unit normal vector; dimensionality

N finite element cardinal basis

p pressure; iteration index

q generalized dependent variable

Q generalized discretized dependent variable

R domain of elliptic operator

Re Reynolds number

S finite element assembly operator

u i ean lowvelocity vector

Reynolds stress tensor
iJ

U reference velocity

X i Cartesian coordinate system

a parameter

3R boundary of solution domain R n

v



6Kronecker delta; increment

Aincrement; element measure

cturbulence dissipation function

X jet velocity ratio

vkinematic viscosity

p density

a.. mean flow Stokes stress tensor

harmonic function for conservation of mass

global solution domain

Superscripts:

h approximation

n dimension of R

o initial condition

T matrix transpose

mass-weighted time-average

time average

unit vector

fluctuating component; ordinary derivative

Subscripts:

0freestream reference condition

e finite element domain

i,j,kd tensor indices

j jet reference

n normal

vi



Notation:

{ } column matrix

[ ] square matrix

UJ union

n intersection

sbelongs to

I I absolute value

vii



LIST OF FIGURES

Fig. No. Title Page

1. Oil Flow Streaklines on the Injection Plate .... ......... 3

a) Blockage Due to Solid Cylinder

b) Blockage Due to Circular Cross-Section VSTOL Jet, A = 8

2 Oil Flow Streaklines for a Circular VSTOL Jet ... ........ 5

3 Coordinate Description for VSTOL Jet in a Cross-Flw 5..... 5

4 Experimental Velocity Distributions, Circular
Cross-Section Jet, A = 8 ..... .. ................. 6

a) Axial Isovels, x1/D = 7.0 c) Transverse Plane

b) Axial Isovels, x1/D = 23. Velocity Distribution,
xl/D = 23 ... ...... 6

5 Similitude for Circular Jet Centerline Trajectory .. ..... 8

6 Experimentally Measured Surface Pressure Coefficient
Distributions on Injection Plane, Circular Jet, = 8. . . . 8

7 Experimentally Measured Surface Pressure Coefficient
Distributions on Injection Plane, Various Jets, X = 4 . . 9

8 Computer Pressure Coefficient Distributions at
Injection Plane ...... ...................... ... 10

a) Solid Blockage with Zero Entrainment

b) Circular Jet with Entrainment, A = 8

9 Computed and Experimental Data Comparison for U., Turbulent
Flow in a Rectangular Cross-Section Duct .... .......... 22

a) xi/C = 30.0

uiu Model [19]
13J

b) xi/C l 37.0

Experiment F14]

10 3DPNS Discretization Information for VSTOL Jet Simulation • 24

a) Transverse Solution Domain Discretization

b) Transverse Velocity Initialization U(O)

viii



11 3DPNS Computed Transverse Plane Velocity Vector
Distributions, Square Jet, U./U./U. 1.0/0.2/0.0, t = 102. . . 28

a) x1/D = 0.5 b) xj/D = 1.0
Smu = 0.013 6 = 0.026

c) xi/D = 1.5 d) xj/D = 2.0

= 0.021 , 0.017

12 3DPNS Computed Transverse Plane Velocity Vector t
Distributions, Square Jet, U./Uj/U = 1.0/0.02/0.0, v = 102 . 29

a) xi/D = 0.5
Umui = 0.086

b) x1/D = 1.0

amu = 0.052

13 2DPNS Computed Solution Field, Turbulent Rectangular
Slot Jet Flow, U./U. = 1.0/0.02 ...... ................ 31

a) Axial Velocity U,

b) Transverse Velocity D2

c) Turbulent Kinetic Energy k

d) Dissipation Function c

14 2DPNS Computed Reynolds Stress Distributions,
Turbulent Rectangular Slot Jet Flow ... .............. ... 32

a) Normal Stress uiu--i

b) Normal Stress uu

c) Shear Stress uzu 2

d) Turbulent Viscosity vt

15 3DPNS Computed Transverse Velocity Distributions,
Laminar Circular Jet, Zero Cross-Flow ... ............. .. 34

a) xi/D = 0.25 b) xj/D = 0.75
m m = .0 1
u = 0.0015 u : 0.0015

c) xj/D = 1.25
mm :0.0018

ix



16 3DPNS Computed Transverse Velocity Distributions,
Turbulent Circular Jet, Zero Cross-Flow ..... ............ 35

a) x1 /F) = 0.25 b) x1/D = 0.75
am =Um = 0.052:0.039

c) x1/D = 1.25
Um = 0.034

17 3DPNS Computed Solution {QI}, Turbulent Circular Jet,
Zero Cross-Flow, xj/D = 1.25 .... ................. ... 36

18 3DPNS Computed Transverse Velocity Distributions,
Circular VSTOL Jet, U.U./U. = 1.0/0.2/0.1, Turbulent .. ..... 37

a) x1 /D = 0.0 b) xj/D = 0.25~m -m :0. 176
u m = 0.174 u 0

c) xi/D = 0.50
~mu& = 0.160

18 3DPNS Computed Transverse Velocity Distributions,
Circular VSTOL Jet, U.U-/U = 1.0/0.2/0.1,
Turbulent, Concluded J.j ..... .................... ... 38

d) xi/D = 0.75 e) xi/D = 1.0
U m = 0.136 U : 0.110

f) x/D = 1.25

Um = 0.102

19 3DPNS Assessment of Gross Turbulence Modifications,
Circular VSTOL Jet, U./U./U, = 1.0/0.2/0.1 .... .......... 40

a) x1/D = 0.5 b) x1/D = 1.0t t
V = 10/10 V = 10/10

Um = 0.107 u = 0.109

c) xj/D = 0.5

Vt = 100/10

,m = 0.139

u£x



20 3DPNS Computed Solution {QI}, Turbulent Circular Jet With

Cross-Flow, X = 10, xj/D = 1.25 ..... ................ ... 42

a) Axial Velocity D

{a, b, c, d, el =

[.3, .5, .7, .9, 1.0}

b) Turbulent Energy k

{a, b, c, d}

f.013, .025, .040, .045}

c) Dissipation Function c

fa, b, c, d, el =

{.02, .2, .5, .65, .7}

xi



INTRODUCTION

In the transition from hover to wing-borne flight, a significant portion of

VSTOL aircraft lift is furnished by engine thrust. The injection of a high-

velocity jet of exhaust (or air), at almost right angles to the aerodynamic

surface, and to the cross-flow induced by the aircraft forward flight, pro-

duces an extremely co,:iplicated three-dimensional flowfield which can signifi-

cantly impact aerodynamic performance. Since the basic phenomenon of trans-

verse jet injection is so fundamental to VSTOL performance, it is crucially

important that a firm understanding of cause and effect be established. The

purpose of this project was to ascertain dominant fluid-dynamic mechanisms

characterizing the basic VSTOL jet, using a computational simulation of a math-

ematical description of tie associated three-dimensional turbulent flowfield.

Since the transverse jet is fundamental to many physical processes, in

addition to VSTOL aircraft, an extensive base of experimental data and linear-

ized theoretical analyses is in existence. The first consequential theoretical

study was reported in the dissertation of Chang [1], who employed potential

flow theory and bound vortex filament concepts to predict the shape of the

separation boundary between a uniform onset flow perpendicular to a cylindrical

jet. A series solution yielded the initial roll-up near the jet exit plane.

A (hand) numerical solution produced the down-field roll-up, which illustrated

evolution to the hallmark horse-shoe cross-sectional shape. The basic concept

of application of potential flow theory has been extended and refined to a

great extent. Viscous-corrected potential models can now accurately predict

gross far-field flow characteristics such as jet centerline trajectory, later&l

spread, cross-section shape and mean axial velocity at each cross-section,

c.f.,[2, 3].

Jordinson [4]conducted pioneering experiments on a round VSTOL jet, that

confirmed the horse-shoe cross-section contours predicted by the potential flow

models. However, his results also confirmed that the VSTOL jet induced the

injection plane boundary layer flow to become entrained into the wake region

behind the jet. This action was not predicted by the elementary theory, which

prompted the viscous-correction procedures. This action is not characteristic

of a jet issued from an isolated orifice [5], and has become recognized as per-

haps the consequential contributor to alterations of VSTOL aircraft perfor-

mance. "Entrainment" is properly interpreted as the total effect of vortex

... .... " ~ ~ ~~1 r - -,



roll-up plus turbulent mixing, while "blockage" describes inviscid flow around

an equivalent solid body. The potential flow model equivalent is therefore a

cylinder with suction coupled with an impirical accounting for viscous effects.

These observations from Jordinson's data prompted conducting of a wide

range of experimental tasks, cf.,[6-12]. McMahon and Mosher [81 published

photographs of oil flow streaklines on the injection plate, see Figure 1, that

provide qualitative evidence of the difference between a VSTOL jet and the

equivalent-diameter solid blockage. For the latter, Figure la, stagnation

points exist both upstream and downstream on the center-line and are connected

by an apparent inviscid flow streamline. Outside this streamline, the exterior

flow simply responds to the blockage induced by the body. The flow interior to

this streamline curves inwards to the centerline and appears to form a closed

recirculation zone. Since the plate is impervious, an axial flow must become

induced, directed away from the plate and parallel to the solid cylinder for

some distance. Thereafter, the shedding of the Karman vortex street probably

results.

The streaklines for the circular VSTOL jet, Figure ib, are consequentially

different (note that the concentric circle is part of the experimental appara-

tus and not a streakline). The upstream stagnation region does not appear con-

sequentially different, indicating blockage-dominance. However, at mid-jet,

the surface flow is directed almost radially inwards, in distinct contrast to

solid blockage flow. Two streamlines are symmetrically oriented downstream,

which separate the complex wake interior flow from the deflected free-stream.

The incoming streamlines, which divide the flow region into entrained or de-

flected segments, intersect the downstream-dividing streamlines symmetrically,

and a weak stagnation line appears to connect these two points (essentially on

top of the circle).

A close-up from a similar test [9] is shown in Figure 2, which clearly

delineates the near wake streakline patterns. A weak stagnation point is

indicated about one jet diameter downstream on the symmetry plane, with a

transverse streamline separating wake inflow from outflow. The dominant ex-

terior flow deflection streamline is clearly evident, with the blockage flow

bifurcating at the intersection with the transverse streamline.
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a) Blockage Due To Solid Cylinder

U

b) Blockage Due To Circular Cross-Section VSTOL Jet, 8

Figure 1 Oil Flow Streaklines On The Injection Plate.

From McMahon And Mosher

3



Additional insight into the basic transverse jet is provided by experimen-

tal data obtained using conventional pressure probes in the farfield L10-121.

Figure 3 illustrates the essential VSTOL geometry and coordinate description,

and "far-field" is nominally the region downstream of Xl/D - 5, where D is the

jet original diameter. "losher [101 concludes that, for a circular jet with

velocity ratio 4 < A < 10, which for incompressible flow is the ratio of jet

velocity U. to the onset freestream velocity U , entrainment is the primary

bending mechanism, and becomes more dominant as x increases. Kamotani and

Greber [111 studied the X = 8 circular jet and pursued considerable data

interpretation. In particular, they determined the locus of plane orientations,

along the jet path, with unit normal parallel to the local extremum velocity,

ie. the "jet path." In Figure 3, this plane is spanned by the X2, X3 coordi-

nates, and the normal vector is parallel to XI. Their data, plotted in the

vertical (YZ) plane, Figure 3, produced the familiar horse-shoe profiles

previously determined by Jordinson.

When the local velocity vector is resolved into scalar components in the

local transverse plane coordinate system, the jet cross-section shape, and

transverse plane counter-rotating vortex flow, immediately become visible.

For example, Figure 4 is the symmetric half-plane distribution of axial

velocity for x = 8, at stations Xl/D = 7 and X1/D = 23. The characteristic

"kidney" shape of the isovels is clearly illustrated. Since the jet is

essentially axisymmetric at the point of injection, a characteristic action of

the VSTOL jet appears a preferential erosion of the potential core in the near

wake region, producing a double maxima off the symmetry plane. Figure 4c)

shows the transverse plane velocity vector distribution at X/I/D = 23; the

center of the vortex is coincident with the extremum axial velocity, Figure

4b). Transverse velocity data for the X = 8 circular jet, confirms existence

of the centered double vortex structure as near to injection as X1/D = 5.2,

[12]. These data have been examined for similitude; Figure 5 summarizes the

minimal data spread for definition of jet trajectory over a range of velocity

ratios.

Limitations with conventional probes have precluded gathering of velocity

data closer to the injection plane than X1/D - 5. (The emergence of the three-

color laser Doppler velocimeter will perhaps remove this obstacle.)

Additional characterization of the basic VSTOL jet has thus been limited to

measurement of pressure distribution on the plate forming the injection planei
4
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Figure 2 Oil Flow Streaklines For A Circular VSTOL Jet,

From Margason And Fearn L9].

Z X3 XI

x

Figure 3 Coordinate Description For VSTOL Jet In A Cross-Flow
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[10-14]. For example, Figure 6 compares two data sets for the injection plate

surface pressure coefficient distribution, for the circular jet at X = 8. Only

the upstream distribution appears analogous to potential flow about a solid

cylinder. The extensive low pressure region downstream of mid-jet is a dis-

tinctive characteristic of the VSTOL jet, and probably a (the) significant aero-

dynamic influence, since in reality the injection plane is an aerodynamic sur-

face. Alternative jet cross-sections and shapes modify the details of the asso-

ciated pressure distribution, see Figure 7, but do not alter the basic character.

A computational simulation of the causal mechanism of the extensive low

pressure region is reported [15]. For this analysis, an aerodynamic contour was

assumed to exist surrounding the jet, and separating the region of transverse

flow affected primarily by blockage, from that dominantly influenced by entrain-

ment. This contour was assumed a porous Joukowski airfoil, with the surface

onset (suction) velocity distribution an input parameter of the simulation

study. A series of computer experiments were run to optimize agreement of com-

puted pressure coefficient on the airfoil surface, with experimental data on the

airfoil image on the injection plate. Figure 8 summarizes the results; the en-

trainment case, Fig. 8b), clearly produces a large aft region of low pressure,

in qualitative agreement with experiment, Fig. 6 and 7b). In comparison to the

zero entrainment (solid airfoil) prediction, Fig. 8a) the pressure recovery in

the trailing edge region is completely absent.

These experimental data, and the computational experiment, appear to confirm

that the large low pressure region is the direct effect of the entrainment

action of the basic VSTOL jet. The farfield velocity measurements confirm the

preferential wake erosion, of the initially circular jet cross-section, and the

evolution of a transverse vortex pair. The axial velocity contours flatten

broadside to the onset flow to produce a bluff rather than aerodynamic cross-

section. While these data provide a rather comprehensive characterization, the

dominant causal influence remains no more well defined than being an interaction

between the jet and the cross-flow.

The purpose of this study, the results of which are reported herein, was to

formulate a mathematical model of the basic VSTOL jet, and to validate its

appropriateness by performing a series of computational experiments on the

discrete analog (numerical) approximation to the mathematical description. Since

the ideal VSTOL jet problem is essentially incompressible, steady, turbulent and

7
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fully three-dimensional, the mathematical description must be quite comprehen-

sive. The approach selected was to utilize a continuity-constrained, finite

element algorithm for the parabolized form of the time-averaged, three-dimen-

sional Navier-Stokes equations (3DPNS). The essential ingredients of this

algorithmic description are discussed in the section on Problem Definition. A

production finite element computer code (COMOC:3DPNS) was utilized to conduct

the computational experiments, and the description of problem definition and

data deck preparation is contained at the end of this report. The key results

of the computational experiments are discussed, regarding the basic causal

mechanisms of the VSTOL jet, as well as confirmation test case results docu-

menting viability of the constructed computational model.

/ . . --- _ /

, 0 ' - 'I I --. . .-, ..

* 3 3 , 3 3 42 * 3 3 0 t 3 3 4

a) Bluff Rectangular b) Circular

/ 0
,~42

3" 03 /

,,4'-''-L

c) Streamline Rectangular

Figure 7 Experimentally Measured Surface Pressure Coefficient

Distributions On Injection Plane, Various Jets, X = 4, From r141
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PROBLEM DEFINITION

Overview
The requirement is to establish a partial differential equation system pro-

viding an adequate description of the basic VSTOL jet configuration. As men-

tioned in the Introduction, the essential features are three-dimensional and tur-

bulent, with the flow basically steady and of constant density. The complete

three-dimensional, time-averaged Navier-Stokes equations (3DNS) provide the

accurate description; however, their numerical solution is essentially intrac-

tible with present computer hardware. The three-dimensional parabolic Navier-

Stokes equations (3DPNS) is a simplification of the 3DNS system, that is appro-

priate for steady flow prediction in aerodynamic configurations wherein the pre-

dominant velocity component does not suffer reversal, and where certain other

requirements are met. The next level of simplication to 3DNS reduces the

problem description to two-dimensional, which is unacceptable. The 3DPNS

system is numerically tractible, and therefore has been employed for the com-

putational analysis of the VSTOL jet problem.

This Section presents the construction of the 3DPNS equation system for

the VSTOL jet problem, including a turbulence closure model for the Reynolds

stress tensor. The finite element numerical solution algorithm for 3DPNS is

described, including the differential constraint procedure employed to enforce

the (non-parabolic) continuity equation. Documentary numerical results are

briefly outlined that validate the theoretical, accuracy and convergence aspects

of the resultant computational simulation capability.

Three-Dimensional Parabolic Navier-Stokes Equations

The 3DPNS equation set is a simplification of the steady, three-dimensional

time-averaged Navier-Stokes equations. In Cartesian tensor notation, and em-

ploying superscript tilde and bar to denote mass-weighted and conventional time-

averaging, respectively [16], the conservative equation form for an isoenergetic

fluid is

L( ~;) j = (1

L(u + - - (2)
i ) 3 jui ij j TT i j-_



L(5k) j k + (C
;xkE 1 j 13 ixi

L( ) : u3 + C3r UiUj +

+C 0 (4)

In equations 1-2, is (constant) density Dj is the mean velocity vector, p is

pressure, 6i. is the Kronecker delta. The Stokes stress tensor Cij is

defined in terms of the Reynolds number Re as

- ( 2aij =  c, (Eij* ijE kk) / R e  (5)

and Pui i  is the Reynolds stress tensor. The fluid kinematic viscosity is

v, and Eij is the mean flow strain rate tensor

Ei 30i +

ii 3X 3xi  (6)

Equations 3-4 are the transport equations for turbulent kinetic energy

and isotropic dissipation function, as obtained using the closure model of

Launder, Reece and Rodi [17] for the pressure-strain and triple correlations,

and

k - u l u (7)

Sxkj j (8)

The various coefficients CB are model constants, Hanjalic and Launder [18].

The parabolic Navier-Stokes equation set is derived from equations

1-4 assuming the ratio of extremum transverse mean velocity component to

downstream (axial) component is less than unity, and that:

12



1. the downstream velocity component suffers no reversal,

2. diffusive transport processes in the downstream direction are
higher-order, hence negligible, and

3. the overall elliptic character of the parent three-dimensional
Navier-Stokes equation can become enforced through construction
of a suitable pressure field.

Viewing Figure 3, for the VSTOL jet problem, the x1 (curvilinear) coordinate

defines the predominant mean flow direction, with scalar velocity component Ul

of order unity, i.e., 0(1). Hence, assume O(W2) - 0() - O(3) and 0(5) < 0(l).

Then, the continuity equation 1 asserts that the downstream variation in u1

must be of order equal to appropriate transverse plane variations of u2 and u3;
hence, for -- z 0(), - z 0(6-1 ) a

ax1  aX2  X3
Determination of the relative order of terms in the momentum equations 2

is straightforward. For the 61 equation, since 0(p u7) must be 0(6), thea ,13

term 2- (pi1") is higher order and discarded. The assumption that the x, -
aE) further, 2 (1x()

diffusion is negligible permits setting - ( = 0
ax3 62 3 eeinofteetrs i ax2 CaXl
7X3 . Deletion of these terms is the fundamental step to the parabolic

approximation, as it removes the elliptic character in the downstream direction.

The convection term _- 1(PD1 1) instills the initial value form that permitsax1
marching the solution for D in the downstream direction. The final 3DPNS

form, denoted LP(.), for the U, momentum equation is

+ _

;P( -,3x z L " -

u.~ u - = :0
J (9)

As a final note, should x. correspond to a curvilinear coordinate description,

the derivatives expressed in equation 9 become the covariant derivative.

In agreement with the parabolic concept, the order of pressure variation

in the transverse plane must be determined by the lowest order terms appeari:!g

in equation 2 written oi, 2 and U3 . Each transverse derivative of puu and

is 0(0), while all other terms are 0(6) and higher.
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PIP-

The resultant three-dimensional parabolic approximation is made numerically

tractible by taking the divergence of the approximation to equation 2. Retain-

ing the higher-order convection and laminar diffusion terms for generality, the

3DPNS equivalent of both transverse momentum equations is [19],

L~p + U3 x xL . u - 0 (10)

which defines the 3DPNS limited index summation convention, 1 < (i,J) < 3,

2 < < 3.

Equation 10 defines an elliptic boundary value problem for determination

of pressure distributions in the transverse plane. The pressure field that

satisfies this Poisson equation consists of complementary and particular

solutions.

P(xi) = Pc(xi) + Pp (xi) (11)

The complementary solution is assumed to satisfy the convection pnenomena,

=_ ~_ a2( 0 OJ)

L(p) 2xP + a xj) (12)

subject to the Dirichlet boundary conditions known for p(xl,xk). Elsewhere,

an appropriate boundary condition for Pc is homogeneous Neumann. The particular

pressure pp satisfies equation 10, less the convection term, subject to homo-

geneous Dirichlet boundary conditions on boundary segments where Pc is known.

The critical aspect affecting application of the 3DPNS equation set to

analysis of the VSTOL jet, is knowledge of the boundary values for .0 (xi, x,),

as required via assumption 3 of the 3DPNS argument. Viewing Figure 3, the

VSTOL jet is a fully three-dimensional problem with elliptic coupling through-

out in its entirety. However, see Figure 5, the trajectory of the jet for the

first few jet diameters away from the injection plane is nominally vertical.

Hence, if the 'computational box" surrounding the jet and the near field flow

is sufficiently large in lateral (X,Y) extent, it is fair to assume that the

potential flow pressure exists on the box boundaries, and for some vertical

distance (parallel to the Z axis). Therefore, the validity of the 3DPNS

analysis is expected to be limited to a region close to the injection plate

surface, eg., 0 < xl/D < 4, provided the lateral boundaries are sufficiently

remote. For the analyses reported herein, these boundaries of the 3DPNS

14



simulation were placed at IxZI/D 3. The jet path was assumed straight and

perpendicular to the plane. The complementary pressure solution boundary

condition p, on the upstream and lateral side boundaries, were set by the

farfield potential solution for flow about a cylinder. The complementary

pressure Pc at the outflow boundary was determined using Bernoulli's equation,

which admitted reversal of the transverse flow and was compatible with the

lateral farfield potential solution.

Reynolds Stress Closure Model for 3DPNS

A closure model for the kinematic Reynolds stress -u-- , appearing in

equations 3-4 is required to complete the 3DPNS order of magnitude analysis.

A stress-strain rate constitutive equation, Baker, et. al. [20.1 establishes

the lead terms of the kinematic form as

k- kZ -
-1uiu. = -k:ij + C 47:E + CzC.-EikEk + (3

1J jr-ik k1J (13)

Eij remains the symmetric mean flow strain-rate tensor given in equation 6.

This expansion results from re-expression of triple correlations within the

Reynolds stress transport equation using the model of Launder, Reece and Rodi

[17], and is a generalization of the original analysis by Gessner and Emery

[21]. In equation 13, cij is a diagonal tensor in principal coordinates.

=i 1 3- -U~ lii (14)

The ai are coefficients admitting anisotropy, where al E C1 , and a2 E C3
a3. The C. are defined as, see Launder et. al. [17].

22(Col - 1) - 6(4Co, - 5)
C - 33(Co0  - 2Coz)

4(3Coz - 1)
Cz  II(C'o - 2C 2)

22(Col - 1) - 12(3Co3 - 1)
C _ 33(CO, - 2Cz)

C4 E 44C,2 - 22C 11C0= - 128Coz - 36CL + 10 (15)
165(Cal - 2COz)-
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where CO1 and C02 are "universal" empirical constants. Suggested values are

Cal - 2.8 and C0 2 - 0.45, Hanjalic and Launder [18]. In rectangular Cartesian

coordinates, and retaining terms of the first two orders of significance, the

kinematic Reynolds stress scalar components are

0(e) o6'

C~~ 2 ~ j -

3r. izi2 k2F 3,
L - -

-u=u; C3 k - C .

xtx --j-uui - C4- 2 4 -3 5;-__ z

+ + ~ Z.

-u~uj = - 3xj - k3 
__

C4 0 t - r
;x 3 ;x1  3X3jJ

u_, -. k2  + (16)

With equation 16, the ordering of terms in equations 3-4 can be completed

to establish the appropriate 3DPNS approximation as, I < i < 3, 2 < z< 3,

LPk = (-CD6 ) +
LPk - i)xi  + : i t:Ck--Ul i u~k'=_,.

+ + = (17)

A.. -,( 7L P (z ) +x7 ( u 3 x L k
.x -Z X C E 

(18)
+Cw  , ,16 + C_ Z 0
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Finite Element Solution Algorithm

The consistently ordered 3DPNS equation system has been identified. For
hedependent variable set qj(x i) =_ {q) 

=  6, u2, U, P,k,} T , the governing

system includes equations 1, 9, 10, 13, 17 and 18. Equations 9, 10, 17 and 18

exhibit the initial value term that permits the space-marching of 3DPNS.

Equation 13 exhibits elliptic boundary value character with parametric initial-

value dependence. The continuity equation 1 solution will become recast and

utilized as a differential constraint.

The generalized form of the 3DPNS description is

LP(q . . ) + -- Iqj + S = 0(19)

where f and sj are specified non-linear functions of their arguments, as

determined by the index j. The solution domain Q is defined as the product of

R2 and xi, for all elements of x, belonging to the open interval measured from

x1 (O), i.e.,

, =- R2 x x, = {(x.,xj.): xR and xje[xi(O),x:)
L(20)

The boundary 3Q is the product of the boundary R of R2 and xj, Q - 3R x xj.

Thereupon, the generalized differential boundary constraint is

Z(qj) = aqj + az 3X. qjni + a, = 0 (-21)

where the ai are specified coefficients and i is the outwards pointing unit

normal vector. Finally, an initial distribution for qj on Q0 -R' x xi(O)

is required.

(22)

The finite element numerical solution algorithm for equations 19-22

defines the approximation qj(x£,xj), to the (unknown) exact solution qj(x,,xi),

which is constructed from members of a finite dimensional subspace of HU(Q),

the Hilbert space of all functions possessing square integrable first deriva-

tives and satisfying equation 21. Hence,
M

qj(xtgxl) _ qe(xZ'x)(x,) (23)

17



and the elemental approximation is defined as

qj(x.,xl) = I'Nk(x )}TQJ(x,)"
3 k k ) x e (24)

In equations 23-24, j(J) is a free index denotiT? members of {qh}, and sub-

or super-script e denotes pertaining to the eth finite element, e 2e X X 1 .

T ee
The elements of the row matrix {Nk(x )} are (linear, k = 1) polynomials on x,

2 < k < 3, constructed to form a cardinal basis [22].

The functional algorithm requirement is to render the error in qj minimum

is some norm. This is accomplished using the finite element algorithm, by re-

quiring the generated errors LP(qh) and Z(qh) to be orthogonal to the function

space employed to define q~ I and that the discrete approximation LP(ph) to

the continuity equation 1 be enforced as a differential constraint. Identify-

ing the multiplier set Bi, these constraints are combined [22] to form the

theoretical statement of the finite element solution algorithm as

VR(N k}LP(q i)d- + B:- 9R (N k } (q i)d +  -R 27fNk IL p (-h )d - ; 0, (5~ (3 )d;(25)

Equation 25 defines a system of ordinary differential equations written

on the jet direction x1 .

[C]{QJ}" + [U]{QJ} + [FLJ]{QL} + {SJI = {0} (26)

Using the trapezoidal integration rule, and substituting equation 25 yields,

jFJ} {Q - Q - + {QO}.] 2 :{0' (27)

which defines a system of non-linear algebraic equations for determination of

the elements of {QJ(xl)}. The Newton iteration algorithm for equation 27 is

[J(FJ)J +I6QJ}P+I

J+.. j+l j+l (28)

written on the iteration vector {6QI1}, where

f~j.P~ = QJ P + (dj 1D+1- .J+1 j+l (29)

The remaining issue is the non-parabolic continuity equation 1, which

governs first-order effects on the mean velocity field 6i. Since the formal

18
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3DPNS momentum equation 9 is written on u1 only, Uk {u2 ,u3} is required to be

determined from the solution of equation 1. This is accomplished in the finite

element algorithm formulation by enforcing a measure of the solution of equation

1 as a differential constraint on the solution of the (higher-order) 3DPNS approx-

imation to equation 2 written on 6 C Retaining the highest two orders of terms,

the 3DPNS order of magnitude analysis for transverse momentum equations yields

LP(.: k) - F:- uu + 7UTU

3-z uzk + uu + 5:k' - 9 0

(30)

Note that equation 30 is of the form of equation 19, and employs the 3DPNS

limited index 2 < k < 3. The middle two terms in the second bracket are 0(1),

while the remaining terms are all 0(6). The boundary condition statement 21

is appropriate, upon the retention of terms of 0(62) in the Reynolds stress

equation. The initial condition statement for equations 30 is expressed in

equation 22.

The finite element algorithm statement for equation 30 is given by equation

25, upon specification of the form of the term modified by a2. The theoreti-

cal concept, borrowed from the variational calculus [22], is to enforce a

measure of the continuity equation (solution) as a differential constraint on

solution of the transverse momentum equations. This solution measure must span

R2, and must vanish as continuity becomes satisfied; the appropriate measure is

the harmonic function O(x,), the solution to the Poisson equation

- ( x iu) 0
;X, )(31)

The boundary conditions for p are homogeneous Dirichlet everywhere at farfield.

Equation 31 becomes homogeneous as the continuity equation 1 becomes satisfied,

and becomes null as a consequence of the boundary condition specifications.

A detailed discussion of the algorithmic embodiment of the differential con-

straint concept is given in [22].
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Documentary Results

The finite element, differential-constraint numerical solution algorithm

for the 3DPNS equation system 1, 9, 10, 13, 17, 18, 30 and 31, for a turbulent,

subsonic three-dimensional analysis in bounded, semi-bounded and.fully unbounded

solution domains Q , is operational in the COMOC:3DPNS computer program. A

latter report Section presents the detailed data deck set-up procedure for the

VSTOL jet simulation study. Additional documentation on data preparation for

COMOC:3DPNS will become available [23].

Documentation of theoretical concepts, and numerical tests to evaluate

accuracy and convergence are reported elsewhere, cf. [19], [22]. As becomes

apparent in the results discussion, the essential requirements for the 3DPNS

VSTOL simulation are robust enforcement of (the non-parabolic) continuity

equation, and accounting of the turbulence interaction between the jet and the

cross-flow.

Test case results attest to excellent performance of the algorithm in COMOC:

3DPNS in each area. The two-dimensional form of the 3DPNS algorithm, ie., 2DPNS,

must accurately predict ducted and boundary layer flows, as well as free shear

layers. Table 1, from [19], summarizes the comparison between the direct

boundary layer solution, and the continuity-constraint 2DPNS algorithm results,

for a laminar, incompressible zero-pressure gradient boundary layer flow. The

digit of significance rarges over six digits (106) and the agreement is excel-

lent. The 2DPNS solution is actually more accurate near the wall (x2/6 =

0.0009), where a better approximation to vanishing x2- derivative is achieved.

The intrinsic global measure of error in exact conservation of mass is the

energy norm,

Erhh h -5h dx (32)

kn

where 4h is the approximate solution to equation 31. The evaluation of E(-,-)

decreases monotonically during iteration at j+1, and for this laminar flow

check case, E(',,) < 10- 8 for algorithm convergence at c = 10-5. The corrEs-

ponding levels for a turbulent boundary layer or ducted flow are E(',') < 10-'

for c 10-4 [19].
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The critical evaluation of the Reynolds stress closure system, equations

13-16, is also reported in [19]. For three-dimensional, incompressible flow in

a straight channel of uniform rectangular cross-section, an axial vortex pair

is induced in each corner for a turbulent flow, while none is generated if the

flow is laminar. The results of the 3DPNS simulation confirm these assertions

on both counts. In particular, generation of the counter-rotating vortex pair

for turbulent flow was computationally traced to non-isotropy of the transverse

plane normal stresses -uTiu . Viewing equation 16, this influence is produced

by a term of 0(62), which confirms the importance of a consistent ordering pro-

cedure. Figure 9 shows the excellent qualitative comparison of the transverse

plane velocity vector distribution as produced by COMOC:3DPNS [19], and the

experimental data of Melling and Whitelaw [24].

Table 1

Transverse Velocity Distributions, u2 (x2)xlO
3

Laminar Incompressible Boundary Layer

Coordinate Boundary Continuity

(x2/6) Layer Solution Constraint Solution

0.0 .0 .0

0.0009 .0000011 .0000001

0.0021 .0000054 .0000030

0.0035 .0000149 .0000114

0.0095 .00011 .00011

0.031 .00118 .00118

0.10 .0128 .0127

0.67 .139 .138

1.0 .218 .218
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RESULTS AND DISCUSSION

Overview

The requirement of the 3DPNS computational simulation of the VSTOL jet is

to assess fluid dynamic factors dominating formation of the counter-rotating

axial vortex apir, see Figure 6, and entrainment of the cross-flow into the

jet wake region, cf. Figures 2-3. The 3DPNS solution domain was defined as the

symmetric half-plane, with the circular jet located mid-domain, Figure 10a.

For reference, Figure lOb) is the transverse plane potential velocity vector

distribution used to initialize U (x1 (o), xk) at the nodes of Q(o). The tail

of each vector is at a node, the non-uniform discretization is constituted of

M = 576 triangular finite element domains R . Using this discretization, COMOC:

3DPNS required approximately 200,000 words of central memory to solve for eight

degrees of freedom/node, using the described implicit algorithm, equations 26-

29. No exterior memory was utilized.

Boundary and Initial Conditions

The computational simulation requires solution of a non-linear system of

ordinary differential equations. Hence, the members U1, uZ, k and c, must be

defined initially at the nodes of Q(0). Secondly, since the finite element

algorithm statement has transformed the elliptic boundary value character of

the 3DPNS equations, boundary conditions on all members of {QI(x 1 )} are re-

quired specified everywhere on 3Q = @R2 x x1. Table 2 summarizes the boundary

condition statement for each variable, on segments A-D of the boundary R ,

see Figure lOa). Basically, line AB is a symmetry plane, CDA is the farfield

potential boundary, and BC is inflow/outflow with vanishing normal derivatives.

The specification of suitable initial-conditions {QI(O)} is a perplexing

problem, since no experimental data are available for guidance. For the simu-

lations reported, the initial jet was assumed to be either of circular or

square cross-section, with a constant axial velocity (distribution) Ui(x?) E Uj.

The initial U, distribution outside the initial jet cross-section was assumed

constant at a level smaller than the initial jet velocity U. This constant

was selected, dependent upon the particular test and the associated numerical

stability. The constant is required non-zero, to prevent the 3DPNS equation

set from becoming singular, dependent upon the imposed cross-flow velocity

23
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Table 2

Boundary Condition Specifications for

3DPNS Simulation of VSTOL Jet in Cross-Flow

Variable Equation Boundary Segment Bcundary Condition

U, 9 ABCDA Zero normal derivative

D2 30 AB Zero

BC Vanishing normal derivative

CDA Specified cross-flow

U3 30 ABC Vanishing normal derivative

CDA Specified cross-flow

k 17 ABC Vanishing normal derivative

CDA Fixed at freestream level

E 18 A8C Vanishing normal derivative

CDA Fixed at freestream level

PC 12 ABC Vanishing derivative

CDA Fixed at potential cross-flow

Pp 10 ABC Vanishing derivative

CDA Zero

31 AB Vanishing derivative

BCDA Zero
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level U (cf., the order of magnitude analysis). The VSTOL jet velocity ratio

is thereby X = Ui/U* .

For tests conducted with zero cross-flow, the initial distribution for the

transverse plane velocity field U(x ,x,) was zero. With U. > 0, and following

considerable numerical experimentation, the potential cylinder flow field shown

in Figure lOb) was used to define i,(0) outside the initial jet. Inside the

initial jet, D(0) 0 0. Thus, Bernoulli's equation yields the corresponding

initial distribution of pc on Q(0).

Establishing suitable initial distributions for turbulent kinetic energy

and dissipation function is more perplexing since the interaction on the up-

stream face of the jet is extremely complicated. Since the project scope is

to assess dominant factors, and in the total absence of data, a step distribu-

tion in turbulence levels was assumed appropriate. The initial level of tur-

bulent kinetic energy k was assumed a distinct constant inside and outside the

jet over Q(O). The initial levels of dissipation were specified unique con-

stants, as well, to produce distinct levels of turbulent kinematic viscosity
t=t t

V C4k2/E inside and outside the jet, eg., t
A series of computational experiments were required to ascertain numerically

acceptable levels of k(O) and c(0), within the constraint 1 < v/vt < 102. The

k and c equations 17-18 are directly coupled in the non-homogeneous annihilation

terms DE and D
2/k, and the farfield solutions depend strictly upon this balance

(since all spatial gradients essentially vanish). Boundary levels for k and C

were fixed on segments CDA, Figure 10a), and the 3DPNS algorithm executed to

determine solutions of equations 17-18 in the farfield. The new levels were

then set on CDA, and the tests repeated until the interior solution and boundary

data agreed. For v ; 10, the suitable levels were determined as k(O) = 0.0005

and c(0) = 0.0012. For example, then for v. t 102, k(O) = 0.005 and c(0) =
0.012 are acceptable initialization levels inside the jet.

Validation Numerical Results

As discussed in the following sub-section, the 3DPNS simulation of the

VSTOL jet produces a transverse plane flowfield in substantial qualitative

agreement with anticipated results and extensions of the modest data base.

The requirement is to ascertain that the simulation is free from numerical dis-

turbances that would by themselves produce such results. For this purpose,
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several test cases were executed in the absence of an imposed crossflow, ie.

U 0 0, to quantify algorithm performance with regards to symmetries and robust

conservation of mass. The latter is particularly critical since the sole mech-

anism for generation of U f 0 is through continuity which is employed as the

differential constraint on equation 30 that otherwise exhibits a null solution.

Examples were conducted for initially circular and/or square cross-section

jets. Figure 11 shows the 3DPNS computed transverse velocity distributions on

0.5 < x1/D < 2.0, for a jet of initially square cross-section, for UC = 0 and

U.:U. = 1.0:0.2, where U. is the M(0) inside the jet and U_ is U1(0) outside

the jet. The flow Reynolds number, based upon jet velocity (37 m/s) and jet

diameter (width) is Re = .6 X 104, and the turbulpnt kinematic viscosity t:

102 was held a constant. The computed velocity field exhibits essentially

exact symmetry. Strong flow opposition is computed on the boundary of the jet

at xi/D = 0.5, and thereafter becomes more distributed throughout the initial
"potential core." Note also the lateral spreading of the jet boundary, as

defined by the opposing velocity vector locus. All velocity vector plots are

scaled on the maximum scalar component of D(xI, x). The caption Dm under

each figure legend is the ratio of this maximum to Uj. Hence, note the ex-
m

tremum 6 was reached at xl/D = 1.0, Ui : 0.026, and thereafter decays by 30%

in reaching xl/D = 2.0.

Figure 12 shows the 3DPNS computed D, distributions on 0.5 < xi/D < 1.0, for

the case in Figure 11 but with U.:U. = 1.0:0.02, ie., the farfield background

for U, outside the jet is 1/50 of Uj. Comparing to Figure 11, a significantly

stronger entrainment field is induced at x1/D = 0.5 (6m = 0.086), but there-

after there is no consequential difference. This test addresses the issue of

the 3DPNS order of magnitude analysis, wherein 0(6) < 0(l) by some unspecified

amount. For the test of Figure 11, 0(6) = 0(uj/Um)-1-0(10- ), while for

Figure 12, 0(6) = 0(0.02/0.05) - ' - 0 (1). For the cases with non-zero cross-

flow, where U.:U = 1.0:0.1, these results indicate that for the farfield level

of UI U., the 3DPNS algorithm should function, although in this region 0(s) -

0() is not robust adherence to the ordering analysis. Some detailed solution

differences would occur for Uj not a uniform constant; the evolution of
W9 (xl) would remain essentially unchanged, however, based upon these results.

The final validation is quantization of the algorithm capability to predict

turbulent shear layer interaction on a grid discretizition as coarse as shown

in Figure 10a). For CLis purpose, the two-dimensional algorithm (2DPNS) was
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Figure 11. 3DPNS Computed Transverse Plane Velocity Vector Distributions,

Square Jet, U iU /U 1.0/0.2/0.0, 't : 102.
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executed to simulate a turbulent slot jet flow at U :U = 1.0:0.02, using a

uniform discretization of RI of mesh measure equal to that for the smallest

element domains shown in Figure 10a), as located on the boundary of the jet.

Figure 13 summarizes the 2DPNS solution on 0 < xl/D < 1.0, for a unit Reynolds

number/Length of Re = 0.2 X 107/m. The action of turbulent viscosity smoothly

erodes the slot jet boundary. Entrainment from the farfield, u2 < 0, and

definition of the jet boundary by the sign change in u2, is clearly illustrated

in Figure 13b). The initial distributions k(O) and e(0) were determined from

elementary mixing length theory [161. The solutions for k and 6, Figures 13c)-

d) show the rapid growth in both variables at the edge of the slot jet. The

resulting decay of these peak levels, as the strain rate DUI/3x 2 diminishes

(hence also the non-homogeneous source term in the k and c equations 17-18), is

also evident.

Figure 14 shows the corresponding computed distributions of the Reynolds

stress tensor, equations 13-16. The axial normal stress ufuf exhibits larger

gradients and peak levels, in comparison to the transverse normal stress u~uj,

due both to the difference between C, and C3 , and the action of the 0(62) term.

This latter influence is documented V20] of dominant importance in promoting

prediction agreement with detailed experimental data for an airfoil trailing

edge wake flow. The Reynolds shear stress and turbulent kinematic viscosity

distributions exhibit similar trends.

Circular VSTOL Jet Simulation Results

The principal subject is analysis of a circular cross-section, subsonic

VSTOL jet, issued perpendicular to a flat plate into a subsonic crossflow at

velocity ratio A = Uj/U = 10. The results of the validation test cases, and

additional numerical experiments, provided the initialization procedure. The

initial plateau distributions of axial velocity 61(0) and the reference cross-

flow, were set at U.:U.:U. = 1.0:0.2:0.1, with U. = 36.6 m/s (120f/s). In the

absence of better guidance, the initial velocity U. exterior to the jet was

assumed a uniform constant, to preclude occurrence of fictitious farfield

gradients. The initial distribution for transverse velocity uZ(0) is potential

flow about a cylinder, Figure lOb). The initial levels for turbulence kinetic

energy k(O) > 0.0005 and dissipation E(0) < 0.0012 were set at distinct constant

levels inside/outside the initial jet to produce the desired initial levels of

1 < t < 100. The reference Reynolds number based on jet orifice diameter is

Re = 0.6 X 104.
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Figure 13. 2DPNS Computed Solution Field, Turbulent Rectangular

Slot Jet Flow, U. = 1.0/0.02, x1/D = {0, .25, .5, .75, 1.0} :

{a, b, c, d, e}.
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Figure 14. 2DPNS Computed Reynolds Stress Distributions,

Turbulent Rectangular Slot Jet Flow, xj/D = {O, .25, .5, .75, 1.01 =

(a, b, c, d, el.

32



The necessary comparison results were for this specification in the absence

of cross-flow, ie., U = 0. Figure 15 summarizes the 3DPNS solution for trans-

verse velocity distributions on 0.25 < xl/D < 1.25 for laminar flow. Figure 16mt

shows the comparison turbulent flow results for vt (0) ; 102 inside the jet and

v t(0) f 10 everywhere exterior to the jet. Both figures illustrate the contin-

uity-induced generation and entrainment of a farfield transverse velocity dis-

tribution. The extremum velocity magnitude occurs on the jet boundary for both

cases; however, the laminar farfield magnitude is considerably smaller, in com-

parison to its extremum, than for the turbulent case, see Figures 15c) and 16c).

Of greater fluid dynamic significance regarding entrainment, the extremum tur-

bulent transverse velocities are a factor of 20 or more larger than the lami-

nar flow extrema. This ratio is a quantitative indicator of the enhanced en-

trainment efficiency of the turbulent jet. Figure 17 shows the 3DPNS solution

distributions for q7 = {fi, k, el at xi/D = 1.25, for the turbulent circular

jet in zero cross-flow. The contour levels are labeled and shown in the appro-

priate legend. The distributions for U, and k are close approximations to

axisymmetric, with a slight flattening indicated along the 450 and 1350 rays

from the center. This is a grid induced effect, primarily the consequence of

the initial condition approximation on the union of rectangles, Figure 10a).

This can be observed in the smallest contour level for c = 0.020, Figure 17c),

which lies just above the background initialization level of E(0) = 0.012.

Since the application of U, # 0 will destroy any point symmetry anyway, these

results are taken as confirmation that the selected combination of discretiza-

tion, boundary constraints and initial conditions for the 3DPNS VSTOL jet simu-

lation will not induce a spurious flowfield skewing of measurable consequence.

Figure 18 shows the 3DPNS algorithm computed evolution of the transverse

velocity field on 0 < x1/D < 1.25, for the circular, turbulent VSTOL jet in a

cross-flow, Uj:U.:Uv = 1.0:0.2:0.1. The extremum transverse scalar component,

upon which each figure is scaled is noted in each legend. The blockage effect

of the jet is immediately evident, Figure 18b), as is the beginning of entrain-

ment in the lateral farfield. The transverse velocity field begins to penetrate

the downstream interface of the jet by xl/D = 0.5, Figure 18c), and a decrease

in the outflow in the wake region is evident. This becomes considerably pro-

nounced by xi/D = 0:75, Figure 18d), where wake flow reversal has begun.
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""a) xi/D = 0.25

S . , -"um = 0.0015

b) x1 /D = 0.75

S•'u J ,, = 0.0015

c) xj/D 1.25

• '. , h , m = 0.0018
. .. . , , S . . . *#;

Figure 15. 3DPNS Computed Transverse Velocity Distributions,

Laminar Circular Jet, Zero Cross-Flow.
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S- '-a) x1 /D = 0.25
- - -- - .. . = 0.039

' , , A 2Jl l I

" " \ -; iii, / -"

b) xj/D = 0.75

-, - -m = 0.052

' " \ I , ' ' /
' 

i i

,,, , c) xj/D = 1.25

, ,,,= 0.034

Figure 16. 3DPNS Computed Transverse Velocity Distributions,

Turbulent Circular Jet, Zero Cross-Flow.
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a) Axial Velocity b,

{a, b, d, d, el

{.3, .5, .7, .9, 1.0}

e dcba

b) Turbulent Energy k

{a, b, c, d} =
{.013, .025, .040, .044}

abCdcba

c) Dissipation Function t

{a, b, c, d)

(.02, .2, .5, .651

abcdc b a

Figure 17. 3DPNS Computed Solution {QI},

Turbulent Circular Jet, Zero Cross-Flow, x1/D 1.25

36
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c) xN/D = 0.50

. ... u = 0. 160

g- - N Computed Transverse Velocity Distributions,

Circular VSTOL Jet, Uji/U /U.. = 1.010.210.1, Turbulent
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. . ... . . . .. ,-d) xj/D = 0.75

... .. = 0. 136

e) xj/D = 1.0
- -m

u: = 0.110

-- ' -- - f) x1/D = 1.25

---- ,b -.- m = 0.102

... --- . . -#. . :

Figure 18 3DPNS Computed Transverse Velocity Distributions,
conta Circular VSTOL Jet, UjU /U. = 1.0/0.2/0.1, Turbulent
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The entrainment from the lateral farfield has also become stronger with pene-

tration on the lee side of the jet. The vortex structure interior to the in-
itial jet becomes fully developed by x1/D = 1.0, Figure 18e). The combined

actions of blockage, entrainment, wake flow reversal and axial vortex are each

matured and clearly evident in the solution at x1/D = 1.25, Figure 18f).
The results of Figure 18 can be interpreted as a consequential indication

that the 3DPNS simulation procedure exhibits potential for prediction of the
near-field essential characteristic action of the elementary VSTOL jet in
cross-flow. In particular, the region of reversed flow and angle of the wake
streamline, Figure 18f), are in qualitative agreement with the oilflow streak-
line experiment results, Figures 1-2. The generation of the axial vortex

(pair) is in qualitative agreement with farfield data [10-121see Figure 4. The
jet boundary is not impervious to the cross-flow and the intrusion of entrain-

ment is predicted on the downstream face of the jet. However, as clearly em-
phasized in the preceeding discussions, these results are consequentially
influenced by the many decisions and compromises required to complete the math-
ematical specification, in particular the initial conditions and size and re-
finement of the computational solution domain. These are detailed aspects that
require individual attention. The impetus to attack these subjects is hope-

fully enhanced by the encourageing results of this prediction.

Additional computational tests were conducted to quantize the influence of
gross turbulence factor modifications. Figure 19 summarizes the results for

the VSTOL jet specification of Figure 18. Figures 19a)-b) show the transverse
velocity field i9 on 0.5 < xi/D < 1.0 computed holding vt = 10 a constant

throughout the entire solution domain. Some farfield entrainment action occurs,
but the nearfield crossflow appears almost negligibly deflected. Figure 19c)
shows the comparison solution at xl/D = 0.5, for constant t but with vj t 100.
The jet is considerably more impervious to the crossflow. In comparison to
Figure 18c), a somewhat greater deflection of the upstream farfield has
occurred, and downstream penetration is essentially absent. For the variable

turbulence simulation, Figure 18, an extremum vt 160 was computed on the jet
boundary at x1/D = 0.5. Clearly, the turbulence phenomena exerts a predomi-
nant influence on predicted results which adds further emphasis to the need to

obtain appropriate high quality experimental data.
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a) x;/D = 0.5

-~ - - - ~-w~---- ~ S- .v =10/10
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. -_ v j- z-~ . .-. -_ *b) x,/D = 1.0
t
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Um = 0. 109
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.- . .. . .- ... . ., . - -
t  = 100/10

Sm = 0. 139

Figure 19 3DPNS Assessment Of Gross Turbulence Modifications,

Circular VSTOL Jet, U Uj/U = 1.0/0.2/0.1
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Figure 20 shows the 3DPNS solution distributions for qi = { ,

x,/D = 1.25, for the turbulent circular jet with cross-flow, Uj:U :U. = 1.0:

0.2:0.1. (The transverse velocity solutions are shown in Figure 18.) The con-

tour levels are labeled and numbered in the appropriate legend. The exact com-

parison solution for zero cross-flow is shown in Figure 17, and distinct dif-

ferences are noted. In general, the essential axisymmetry for zero cross-flow

has been altered, with cross-flow applied, and for x1/D = 1.25, the profile

transverse spans are quite flattened with the isoclines somewhat distended up-

stream along a nominal 1350 ray from the circle center. The extremum level

contours for k and e both occupy a larger region of R2 , generally within the

interval 1350 < < 1800. These results appear the combined influence of the

lateral constraint influence of cross-flow, counter-balanced with the effects

of entrainment and core vortex convection to distend the flow profiles prefer-

entially in the upstream quadrant.
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a) Axial Velocity u-

fa, b, c, d, e) =

* - {.3, .5, .7, .9, 1.01

e d cba

b) Turbulent Energy k

{a, b, c, d) =

{.013, .025, .040, .045)

abcdcba

c) Dissipation Function c

fa, b, c, d, el

f.02, .2, .5, .65, .71

abCdCba

Figure 20. 3CPNS Computed Solution {QII

Turbulent Circular Jet With Cross Flow, = 10,

xl/D = 1.25.
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SUMMARY AND CONCLUSIONS

A mathematical model has been constructed for analysis of the near-field

evolution of the basic VSTOL jet in an applied subsonic crossflow. The resul-

tant numerical approximation has utilized a continuity-constrained, finite

element algorithm for solution of the parabolized form of the time-averaged,

steady three-dimensional Navier-Stokes equations for turbulent flow. A Reynolds

stress constitutive equation was employed for turbulence closure which required

numerical solution of the parabolized three-dimensional form of the turbulent

kinetic energy and dissipation function transport equations. Various documen-

tory tests were executed to validate correct operation of the COMOC:3DPNS com-

puter program embodiment of the theory.

The results of the computational simulations of the VSTOL jet, with and

without application of a subsonic crossflow, have yielded results of technical

interest and anticipated merit. Of greatest significance, the constructed

3DPNS model, when operated without fictitious constraints on the turbulence

field (evolution), produced a flowfield solution for the circular jet in sub-

stantial qualitative agreement with the available sparse data. Without initial-

condition generated bias, and using the most elementary solution starting con-

ditions, the 3DPNS model predicted the essential evolution character in sub-

stantial completeness. In particular, the simulation predicted lateral en-

trainment, axial vortex-pair initiation and inducement of the wake flow into

the jet region, antiparallel to the initialized potential crossflow direction.

These documented features of the VSTOL jet were generally lost when the tur-

bulence field was artificially constrained, indicating that the characteristic

action is a turbulence-dominated effect.

It should be emphasized as well that none of the flow characteristics were

consequentially captured without robust enforcement of the (non-parabolic) con-

tinuity equation. The developed constraint algorithm met the detailed mathe-

matical requirements and accurately enforced the detailed solution aspects

related to the 3DPNS ordering analysis. In particular, the finite element

based algorithm maintained the (energy norm) error in exact satisfaction of

continuity at E(.,.) < 6. X I0
-5 for algorithm convergence set at E = 10-4

The 3DPNS algorithm averaged four iterations per step for convergence following

a few extra iterations to homogenize initial condition error. The solution on

0 < xl/D < 1.25 required approximately 60 CPU minutes to execute on a CYBER 175

43



computer, using 200K single precision words of central memory.

These results are interpreted as highly encouraging with respect to consti-

tuting a basic proof of concept. Clearly, the utilized discretization is too

coarse by an order of magnitude, and the transverse domain span too small by a

factor of two or more. The total absence of any data to help generate initial

condition distributions is certainly a liability. Nevertheless, the numerical

simulation capability is three-dimensional and turbulent, and has provided

some valuable and interesting insight to quantify dominant aspects. The dis-

cretization and domain span constraints are strictly computer details (that

can be solved by utilizing the CYBER 20X, for example). The 3DPNS algorithm

can be directly extended to compressible and non-isoenergetic flows, hence be

rendered applicable to the more practical problem involving heated jets (ex-

haust). The Reynolds stress closure model could be replaced by solution of

the parabolized Reynolds stress transport equations, or even more elegant

procedures, if and when it is deemed necessary and/or appropriate. Each of

these issues constitutes a particular detail, building upon the basic structure

of the computational model and computer program. The 3DPNS model could be of

considerable usefulness, for engineering analysis, pending emergence of the

complete 3DNS numerical solution capability (and the CYBER 20X2 or NASF).
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DATA DECK SPECIFICATIONS

Input facilities for the COMOC IV Parabolic Navier Stokes computer program

are sophisticated and greatly simplify data deck preparation and modification.

The program sequentially scans the data deck and operates on command data cards

as they are encountered. Numerical data required for each command operation are

input in free format on cards directly following the command card. Command oper-

ations can cause arrays to be filled, initiate a series of solution operations

or specify output formats and titles. Command card sequence is quite flexible

and care has been taken to ensure that most operations which must be performed

sequentially are specifiable under one command name.

Most numerical data may be input in free format. Data delimiters may be

blanks or commas, thus allowing for esthetic and meaningful arrangement of data

and simple addition or deletion of interspersed numbers. Several features of

free format input which greatly simplify repetitive and sequential data specifi-

cations are:

Repetitive Numbers: 12.5*7
Fills Array 12. 7. 7. 7. 7. 7.

Repetitive Sequence 2(5. 2. 4.
(One per card only)

Fills Array 5. 2. 4. 5. 2. 4.

Skip P locations 10. 12. 3*P 22. T
Fills Array 10. 12. V V V 22.

Increment by a constant 5*50 10 T
Fills Array 10 60 110 160 210

Exponential Notation 6. IO.OE-2 14.OE-4 T
Fills Array 6. 0.1.0014

The data deck for a VSTOL jet in a crossflow solution is segmented into

several sections for description, but appears in sequential order as indicated

by line numbers. The data has been lumped into meaningful categories, each of

which can be related to specific differential equation solution components.

(e.g., initial condtions, boundary conditions, etc.). The Fortran MAIN program

contains global dimensioning and initialization of the primary differential

equation coefficient arrays and parameter lists. A listing of MAIN together

with subroutines GETTPR and NODPPR, which provide flow initial conditions

specific to the jet crossflow problem, follow the data deck description.
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I. NAMELIST (Integer Scalar) Input

23DPNS
7FNAME T READ NAMELIST PARAMETER DATA - INTEGERPREAL
.4 INAMEOI
5 NODE = 330, LCOL = 30, KROW = 30,
6 NM =3, NbP = 1O
7 NEU = 9, NEOKNN = 5, NEQADD = -4,
8 NEOAV2 = 1r NEGAV3 = 1v NCNADD = 5,
9 NPVSX = 30, NTADP( = 3, ITKE = 1,
10 IBLAS = 2, IUONLY = 3,
11 NIMPLT = 1, NBAND = 29, NCNTIT = O,
12 KNTPAS = 4, NPRNT = 132, NTPRNT = 99999, NC B,
13 AEND

Line Command

2 3DPNS Solution procedure (3D Parabolic Navier-Stokes)

3 FEBANE Command to initiate Namelist read

4 &NAMEO1 Integar Namelist Data

5 NODE Slightly larger than the number of nodes
in the solution

LCOL Larger than the number of nodes along abcissa

KROW Larger than the number of nodes along the ordinate

6 NDP No. of Differential Equations plus No. of
parameter arrays required

7 NEQ No. of Dependent Variables

NEQKNN No. of Differential Equations solved

NEQADD No. of Differential Equations initially not solved

8 NEQAV2,3 Set to I to integrate variables U2 and U3
NCNADD Begin U2 , U3 integration after NCNADD steps

9 NPVSX Number of points in the input Pc Table

ITKE Flag indicating solution of the turbulent
shear stresses

10 IBLAS U2 , U3 convergence multipliers in EPS

IUONLY Number of steps until convergence on Ul only

11 NIMPLT Use implicit Newton Iteration procedure

NBAND Maximum bandwidth of Jacobian Matrix

NCNTIT Pass counter to start perturbation pressure solution

12 KNTPASS Maximum number of integration steps between prints

NPRNT Number of columns on a line of output

NTPRNT Exclude integral parameter print

NC Output format number field width

13 &END End of Integer Namelist Data
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II. NAMELIST (Real-Scalar) Input

14 SNAME02
15 UINF - 120., TOFINF = 533., REFL = .0328084,
16 GUMULT = 1.,
17 OS= 1.P PPFACT = 1., PCFACT = 1.,
18 VLDMLT = 1.v UCMULT = 1., RAIRAY(385) .1.E-10
19 RHSCAL = O., U2STRS = 1., RHOI= 1.0,
20 C4EDSW = .03, OSUSQ = 1.E-4,
21 SIMPLT =1.E-5, TMULT = 1.21, EFMULT = .01 ALC = 1.0,
22 TO = 1.OE-5, TD = lO.Ov DELP = 20., HSINIT = 1.E-4,
23 CHIEPS =1.E-4, HMAX = 4.0,
24 &END

Line Command

14 &NAME02 Real Namelist Data

15 UINF Velocity non-dimensionalizing factor

TOFINF Temperature non-dimensionalizing factor

REFL Length non-dimensionalizing factor

16 GUMULT If 1.0 use U2, U3 from continuity for right side
of U2', U3' equations

17 OSG Add stresses to RHS in pp equation

18 VLDMLT Use laminar diffusion in U , U5 equation

VCMULT Add convection to U', Uj equations

RARRAY(385) Add convection to Ui equations

19 RHSCAL Add non-symmetric terms to Reynolds stresses

U2STRS Add stress terms to right side of pp equations

RHOIM Adds wall damping to k, c

20 C4EDSW Integration station where ITKE flag is turned on

OSUSQ TKE minimum

21 SIMPLT Station to begin implicit integration

TMULT Implicit step size = V TMULT

22 TO Initial integration station

TO Downstream distance to final station

DELP Percent of TD for print

HSINIT Initial integration step size

23 CHIEPS Convergence test on Newton Iteration

HMAX Maximum step size allowed

24 &END End of Namelist real data
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III. DYNAMIC ARRAY DIMENSIONING AND DEPENDENT VARIABLE SPECIFICATION

25FEDIHN T ALLOCATE STORAGE FOR ARRAYS
26IPINT -1 T DEPENDENT VARIABLE STORAGE ALLOCATION
27 1 2 3 5 6 7 8 9 0 09 0 0 0 7*0 10*11 1 T

Line Command

25 FEDIMN Dimension arrays to fit problem size

26 IPINT Cards following specify dependent variable
and parameter arrays

Variable 1 primary flow velocity

2 Secondary flow velocity (vertical)

3 Secondary flow velocity (horizontal)

5 Turbulence kinetic energy

6 Dissipation function

7 Perturbation pressure (pp)

8 Complementary pressure (pc)

9 Continuity equation potential (cp)

Dependent variables and parameter arrays are
stored in sequential arrays each of which is
NODE long

In NAMEO

NDP is the number of arrays for space allocation

NEQ is the number of equations to be integrated

NEQADD is the number of equations to begin inte-
grating following initialization
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IV FLOWFIELD GEOMETRY, Non-Dimensionalization and Finite Element Matricies

2BLINK2 14 T GEOMETRY (DSCRTZ)
2?VXISCL T ABCISSA COORDINATES
30 0.0, 4 .1 .8v 6 .6 1.25, 2 1. 1. T
31VX2SCL T ORDINATE COORDINATES
32 0.0, 2 .4 1.0t 6 .9 .8v 4 1. 1.25P 4 1.1 .8, 6 1.6 1.25P 2 2.0 1.0 T

33NDECRD T DISCRETIZATION (XIX2)

34 1 25, 1 13 0 T
35ELEM 0 0 13 T ELEMENT CONNECTION TABLE
36DONE T END GEOMETRY
37LINK3 4 T COMPUTE NON-DIM. CONSTANTS. (DIMEN)
3BLINKI 3 T FINITE ELEMENT MATRICIES (GEOMFL)

Line Command

28 LINK2 14 Reads discretization data and generates triangular

Finite Elements

29,30 VX1SCL Abcissa Coordinates

31,32 VS2SCL Ordinate Coordinates

33,34 NDECRD Number of nodes in the Abcissa direction

Number of nodes in the Ordinate direction

35 ELEM Element connection table

36 DONE End discretization

37 LINK3 4 Form non-dimensionalizing parameters

38 LINK1 3 Computes Finite Element matrices

. x, (marching direction)

S (primary flow) U1)

rsecondaryIflow plane L(x3,x2),(a3u2)1
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V. TITLES AND HEADINGS

39COnTITLE T READ TITLE FOR COMOC SYMBOL PAGE.

40DONE
41DESCRIPT 204 T TITLE FOR EACH OUTPUT-HEADER PAGE

42
43 CIRCULAR JET IN CROSSFLON. - - - 3DPNS
44
45DONE
46DESCRIPT 332 T PARAMETER TITLES FOR OUTPUT. (IOPAR)

47 REFERENCE ENGLISH-FT ENGLISH-IN N-h-S C

49 LENGTH ... FEET... .... IN.... . - ..... ...

49 VELOCITY ..FT/SEC.. ... /S .... ...

50 DENSITY .LBM/FT3.. .KG/M3 ... ...

51 TEMPERATURE .RANKINE.. *.RELVIN..

52 ENTHALPY .BTU/LBM.. KJ/KG...

53 FROZ. SPEC.HEAT .BTU/LBM-R .KJ/KG-K..

54 VISCOSITY .LDM/FT-S. .NT-S/M2.. 11P

55 LOCAL PRESSURE .. .PSF.... ... PSI .... .NT/M2 ...

56 ... CPU TIME ... MACH. NO. ..DPDX1... ..ENERGY.. .CON

57 NWGEOM H'S ... H21.... ... 022 .... ... G23....

58 X1/LREF .DX1/LREF. .EPSILON.. .DX1M/LREF REFL REY

59DONE
6OfPARA -1 T SCALAR MULTIPLIERS FOR DIMENSIONING IONUMB

61 T (LOCATIONS IN RARRAY)
62 5*2, 2*2 162 164 163, 3*2 164 163, 3*2 170 174.

63 3*2 165 2. 2 -175 3*2. 3*2 176 2, 3*2 177 178v

64 2 2 169 169 167, 3*2 108 2, 5*2, 5*2 T

6510NUMW -1 T PARAMETERS TO PRINT UNDER TITLES

66 T (LOCATIONS IN RARRAY)

67 999, 5*200, 999# 200 4*43, 200 27 200 2*27,

68 200 10 200 2*10, 200 58 200 58 200,

69 200 97 200 97 200, 200 30 200 30 200,

70 200 38 200 2*381 999, 39 4*36,

71 300 154 100 135 122P
72 200 186 187 18 379, 11 12 14 85 47 T

73DESCRIP T 203 T TITLES FOR PRINTED ARRAYS (IFMTHD)

74U1 / UREF U2 / UREF U3 / UREF PHI NU / NUR

EF * RE

75TKE /TKEREF EPS / EPSREF PP / PSTAG U1 PRIME PC

76PPRES DPDX
77DONE
78IOSAVE -1 T ARRAYS TO BE PRINTED. (CODED ADDRESSES).

79 1248 2248 3248 9248 1247, 5248 6248 7248 3301 8248 T

80IOMULT -1 T SCALAR MULTIPLIERS FOR EACH ARRAY PRINTED.

81 4*2 21 5*2. 10*1 T

Line Command

39 COMTITLE Problem identifying titles

41 DESCRIPT 204 Std print titles

46 DESCRIPT 332 Std output header labels

60 MPARA Scalar parameter print multipliers

65 IONUMB Scalar parameter print locations

73 DESCRIPT 203 Dependent variable print labels

78 IOSAVE Dependent variable print locations*

80 IOMULT Dependent variable print multipliers (RARRAY LOC.)

*Note in line 79 that the dependent variables are identified by decoding each

number specified (ie. 1248 is stored in the first NODE locations beginning at
the address in IZ(248); Variable 2, 2248, is directly behind Variable 1 since
it is stored in the second NODE locations beginning at the address stored in
IZ(248); etc.).
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VI. DEPENDENT VARIABLE AND PARAMETER BOUNDARY RELATIONS*

82KBNO 1
83TOP -RIGHT 2 DONE
84KBNO 2
85TOP DONE
86KBNO 3
87LEFT TOP DONE
88KBNO 5
B9ADD DONE
90 325*11 1 T
91KBNO 6
92ADD DONE
93 325*11 1 T
94KBNO 7
95TOP -RIGHT 2 -BOTTOM 2 DONE
96KBNO 9
97TOP -RIGHT 2 -BOTTOM 2 DONE

Line Command

82 KBNO I Nodes where U1 is held constant at initial values

(Wall Nodes)

84 KBNO 2 Nodes where U2 is fixed at initial values

86 KBNO 3 Nodes where U3 is fixed at initial values

88 KBNO 5 Turbulence kinetic energy fixed at initial state

91 KBNO 6 Dissipation function fixed at initial state

94 KBNO 7 Perturbation pressure fixed at initial state

96 KBNO 9 Continuity potential function fixed at initial state

Named-side cards are formatted [4(A8, 18, 4X)]

Boundary conditions are applied to secondary flow plane.

Positive direction is counter-

clockwise (ie. [-RIGHT 2] fixes

the right column and node numbers. top

Node numbers are stored beginning left ( right

at the second row from the top and
bottom

proceeding toward the bottom row). X3
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VII. PRIMARY FLOW TABLE DATA

98VU2POS -3
99 0. 0.0166667 0.166667 T
100VU2VAL 136 T NORMALIZED G2,G1 COORDINATES
101 .5 .5 .5 T
102VU3POS -3
103 0. 0.0166667 0.166667 T
104VU3UAL 136 T NORMALIZED F2,FI COORDINATES
105 1. 1. 1. T
106VX38T 43 T PRESSURE TABLE DOWNSTREAM STATIONS
107 21*10.05 0.0 T
108VPVSX T PRESSURE TABLE (PSF).
109 21*2116.8 T

Line Command

98 VU2POS Primary flow direction coordinates (X1 ) where X2
secondary flow plane geometry transformation is defined

100 VU2VAL Expansion factors for variable X2 coordinates

102 VU3POS Primary flow direction coordinates (XI) where X3
secondary flow plane geometry transformation is defined

104 VU3VAL Expansion factor for variable X3 coordinates

106 VX3ST Complementary pressure data stations

108 VPVSX Complementary pressure (PSF)

Geometry Transformation

X2

X2 - f21 (xI)ni = _ _ _ _ _ _ _

[f2 2 (xl) - f2l(x1)]/f2

X3 - f31 (x)

[f 3 2 (xl) - f3 1 (xl)]/f 3

f22 (xI) and f32 (xl) are the span of the secondary

plane

f21 (xj) and f3 1(X1 ) are the minimum secondary

plane coordinates

x2 and x3 are the coordinates of each grid point in

respective directions

f2 and f3 are the secondary plane normalizing

lengths
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VIII. SOLUTION INITIATION

110LINKCALL -1 T SUBROUTINES CALLED AT END OF QKNUIN.
111 5 12 T PUNCH DATA HEN LPUNCH *GT. 0
II2LINK1 2 T GLOBAL NODAL-ELEMENT CONNECTIONS
113RARRAY 39 1.0
114VYY
115 78*.2 7*.4 6*.2 6*.B .4 6*.2
.116 9( 5*1. .8 .4 6*.2
117 6*.B .4 6*.2 74.4 6*.2 78*.2 T
1I8VYYEND 1
119VYY
120 325*0.005 T
121VYYEND 5
122VYY
123 325*0.012 T

124VYYEND 6
125RARRAY 95 0.0012
126RARRAY 271 0.0005
127READ 5 0 56 660 T INITIALIZE OMEGA ARRAY
128 325*1.0 T
129LINK1 4 T INITIALIZE DEP. VAR.
130LINK5 6 T SET NU TURBULENT LEVELS. (DFCFBL)
1311ARRAY 97 0 T RESET ITKE
1320KNINT T BEGIN INTEGRATION.
133EXIT T TERMINATE RUN.
134CASE END T LAST DATA CASE

Line Command

112 LINK 1 2 Form global nodal-element connection array

113 RARRAY 39 Non-dimensional global pressure level

114 VYY 1 Initial primary velocity distribution

119 VYY 5 Initial turbulence kinetic energy distribution

122 VYY 6 Initial dissipation function distribution

125 RARRAY 95 Minimum value allowed for dissipation function

126 RARRAY 271 Minimum value allowed for turbulence kinetic
energy

127 READ 56 Initialize the wall damping a-ray

129 LINK 1 4 Initialize the dependent variables

130 LINK 5 6 Initialize NU turbulent levels

131 IARRAY 97 Reset ITKE to zero

132 QKNINT Initiate implicit Newton integration

133 EXIT Terminate run and return for next data case

134 CASE END Last data case
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l iC

IOIC - - - c - 0 M - 0 - C - - -

102C
103 COMMON / NPINTO / JJJ(30)
104C
105 COMMON / VARBLE / IARRAY(00500), RARRAY(O0500)
106 EQUIVALENCE ( IARRAY(00092), IZSIZE
107 COMMON / ARRAYS / IZ(130000)
108 NZSIZE = 130000
109C
110C -- IBM ERROR HANDLER
IIIC CALL ERRSET 1 207, 500. -1, 1, 0, 217
112 100 CONTINUE
113 CALL ZEROTK
114 CALL RESET ( 00500, ZARRAY, 0
115 CALL RESET ( 00500, RARRAY. 0.0
116 IZSIZE - NZSIZE
117 CALL RESET ( IZSIZE, IZ, 0
11 CALL BDINPT
119 GO TO 100
120 END
f2i SUBROUTINE GETPPR
122 COMMON / ARRAYS / IZ(1)
123 DIMENSION RZ(1), L(400)
124 EQUIVALENCE ( RZ(1), IZ(I), L(I)
125 EQUIVALENCE (L(026),IINODE),(L(109),IB112 ),(L(10),IB113
126 EQUIVALENCE (L(077),IAREA ),(L(036)PIIELS )
127 EQUIVALENCE (L(09).IXICOR),(L(090),IX2COR)
128 COMMON / NPINTQ / JU, JV, J, JN, JK. JE, JP, JS, JT. JAD(21)
129 COMMON / JADRES / JUAD, JVAD, JWAD, JHAD, JKAD, JEAD, JPAD, JSAD
130 1 , JEXT(22)
131 COMMON /VARBLE/ IARRAY(500). RARRAY(500)
132 EQUIVALENCE ( IARRAY(00014), NELEN
133 EQUIVALENCE (IARRAY(00016), NNODE
134 EQUIVALENCE (IARRAY(O0191), NM )
135 EQUIVALENCE < RARRAYCO0027), UINF
136 EQUIVALENCE (RARRAY(00314), C4

13? DATA KT / 0 /
138C
137 IF ( NT .GE. 2 ) RETURN
140 UNON . 0.10
141 UMAX = 0.4
142 UMIN = 0.20
143 YE, = RZ(IX2COR+156)
144 Z& - RZ(IX2COR+104)

145 A = 1.01 1Y - ZB

146 ASO - A * A
147C
148C -- INITIALIZE DEPENDENT VARIABLE ARRAYS
149C -- (NON-DIMENSIONAL)
150C

isiC JUAD UI

152C JVAD U2
153C JWAD = U3
154C JiAD = TKE
155C JEAD = DISSIPATION
156C
157 DO 200 I 1, NNODE

158 IN I - 1
159 Y = RZ(IX2COR+IM) - YB
160 Z = RZ(IXICOR+IM)
161 RSQ Y Y + Z * Z
162 RZ(JSAD+IM) - 1.0
163 IF ( RSQ .LT. ASO ) GO TO 200
144 R - SGRT(RSQ)
165 THETA = ASIN(Y/R)
166 COS2TH = COS(2.0THETA)

167 SIN2TH - SIN(2.0*THETA)
168 ASR - ASO / RSO
169 UVEL - ASR * ASR
170 IF ( UVEL .LT. UMAX ) UVEL - UMIN
171 RZ(JUAD+IM) - UVEL
172 RZ(JVAD+IM) - -UNON $ C ASRSCOS2TH + 1.0
173 RZ(JWAD+IM) - UNON S SIN2TH * ASR
174 RZ(JKAD4IM) - 0.1 * RZ(JKAD+IM)
175 RZ(JEAD+IM) - 0.1 RZ(JEAD+IM)
176 200 CONTINUE
177 RETURN
178 END
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179 SUBROUTINE NODPPR

ISO COMMON / JADRES / JUAD, JVAD, JWAD, JNAD, JKAD, JEAD. JPAD, JSAD
181 1 , JEXT(22)
182C
183 COMMON / ARRAYS / IZ(i)
184 DIMENSION RZ(I), L(400)
185 EQUIVALENCE ( IZ(l), RZ(1), L(1)
186 EQUIVALENCE (L(105),IPRGRD)
187C
188 COMMON / VARBLE / IARRAY(00500), RARRAY(00500)
189C
190 EQUIVALENCE (IARRAY(00016), NNODE
191 EQUIVALENCE (IARRAY(00086), KPNT
192 EQUIVALENCE (IARRAY(00304), NELPAS
193 EQUIVALENCE (IARRAY(00312). IUONLY
194 EQUIVALENCE IARRAY(0O396). JNCPRG
195C
t96 EQUIVALENCE RARRAY(O0023), TIME
197 EQUIVALENCE RARRAY(00062)p CONV
198 EQUIVALENCE RARRAY(00100), PPRINE
19o EQUIVALENCE RARRAY(00207). CONVRG
200 EQUIVALENCE RARRAY(O0208), AMSDIF )
201 EQUIVALENCE RARRAY(00347), TSCALE )
202 EQUIVALENCE RARRAY(00385), UCMULT )

203 EQUiVALENCE RARRAY(00398), T2PFIX )
204C
2105 9600 FORMAT ( IN , 6H PASS , 14, IN, 13. 12H ITERATIONS.
206 1 9H STATION 1PE13.5
207C
208 IUONLY = 3
209 NVERG = CONVRG
21v STAT = TIME * CONV
211 NPASPI - NELPAS
212 WRITE ( 6, 9600 ) NPASPI, NVERO, STAT
213C
214C -- GRID EXPANSION (CONTRACTION)
215C
216 CALL NWGEOM

217C
2'18 IF C JNCPRG .ED. 1 ) CALL JNCPPR
219 AMSDIF - PPRINE
220C
221C -- INCREASE PRESSURE EFFECT TO IOO OVER TEN STEPS
222C
223 IF C NELPAS .LT. 9 ) UCMULT - 1.OE-10

224 IF C NELPAS .LT. 9 ) GO TO 100
225 UCMULT = UCMULT + 0.1
226 IF ( UCMULT .GT. 1.0 ) UCMULT = 1.0
222 100 CONTINUE
228 DO 200 I 1, NNODE
229 IM = I-I
230 RZ(JSAB+IM) - 1.0 - 0.5 S ( RZ(JWAD+IM)**2 + RZ(JVAD+IM)$*2 )

231 RZIPRGRD+IN) * UCMULT * RZ(IPRGRD+IM)

232 200 CONTINUE
233 RETURN
234 END
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